A proper vertex coloring is a labeling of the graph’s vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most k colors is called a (proper) k-coloring.
Now you are supposed to tell if a given coloring is a proper k-coloring.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 10^4^), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex.
Output Specification:
For each coloring, print in a line k-coloring if it is a proper k-coloring for some positive k, or No if not.
Sample Input:
1 | 10 11 |
Sample Output:
1 | 4-coloring |
浅析
Q:问图中是否每条边的两个顶点颜色不同
Code
1 |
|